Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.096
Filtrar
1.
FASEB J ; 38(7): e23534, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38597911

RESUMEN

Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Osteonectina , Animales , Ratones , División Celular Asimétrica , Diferenciación Celular , Osteonectina/genética , Transducción de Señal
2.
Nutrients ; 16(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542777

RESUMEN

BACKGROUND: Childhood obesity is one of the major challenges of public health policies. The problem of fatty liver in childhood, known as MAFLD (metabolic dysfunction-associated fatty liver disease), is of particular interest as the gold standard diagnosis technique is invasive (liver biopsy). Hence, efforts are made to discover more specific biomarkers for the MAFLD signature. Therefore, the aim of the study was to evaluate Osteonectin and Hsp27 as biomarkers for MAFLD diagnosis and to assess their links with auxological and biochemical profiles of overweight and obese pediatric subjects. METHODS: A cross-sectional study in which we (re)analyzed data from the MR PONy cohort comprising 71 pediatric subjects. Auxological data, liver ultrasonography and biochemical serum profile were recorded. Lipid-derived indices and body composition indices were calculated. Nevertheless, serum Osteonectin and Hsp27 levels were assessed using an ELISA approach. RESULTS: MAFLD prevalence was 40.8%. Higher Osteonectin levels were noted in MAFLD subjects versus non-MAFLD subjects and in dyslipidemic children regardless of their liver function status. Lipid-derived indices had good diagnostic capacity for MAFLD. CONCLUSIONS: We confirm Osteonectin as a MAFLD diagnosis biomarker in children. Also, lipid-derived indices are useful as metabolic-associated organ impairment markers in children even before the onset of obesity.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Obesidad Infantil , Humanos , Niño , Animales , Caballos , Osteonectina , Estudios Transversales , Obesidad Infantil/diagnóstico , Proteínas de Choque Térmico HSP27 , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Biomarcadores , Lípidos
3.
Biochem Pharmacol ; 223: 116172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552852

RESUMEN

The enzyme tryptophan 2,3-dioxygenase (TDO2) has been implicated in the dysregulation across a variety of human cancers. Despite this association, the implications of TDO2 in the progression of bladder cancer have eluded thorough understanding. In this study, we demonstrate that TDO2 expression is notably elevated in bladder cancer tissues and serves as an unfavorable prognostic factor for overall survival. Through a series of biological functional assays, we have determined that TDO2 essentially enhances cell proliferation, metastatic potential, and imparts a decreased sensitivity to the chemotherapeutic agent cisplatin. Our mechanistic investigations reveal that TDO2 augments aryl hydrocarbon receptor (AhR) signaling pathways and subsequently upregulates the expression of SPARC and FILIP1L. Importantly, we have identified a positive correlation between TDO2 levels and the basal/squamous subtype of bladder cancer, and we provide evidence to suggest that TDO2 expression is modulated by the tumor suppressors RB1 and TP53. From a therapeutic perspective, we demonstrate that the targeted inhibition of TDO2 with the molecular inhibitor 680C91 markedly attenuates tumor growth and metastasis while concurrently enhancing the efficacy of cisplatin. These findings open a new therapeutic avenue for the management of bladder cancer.


Asunto(s)
Triptófano Oxigenasa , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Cisplatino/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Osteonectina/genética
4.
Cell Commun Signal ; 22(1): 159, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439078

RESUMEN

Heterotopic ossification (HO) is a pathological process in which ectopic bone develops in soft tissues within the skeletal system. Endochondral ossification can be divided into the following types of acquired and inherited ossification: traumatic HO (tHO) and fibrodysplasia ossificans progressiva (FOP). Nuclear transcription factor kappa B (NF-κB) signalling is essential during HO. NF-κB signalling can drive initial inflammation through interactions with the NOD-like receptor protein 3 (NLRP3) inflammasome, Sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK). In the chondrogenesis stage, NF-κB signalling can promote chondrogenesis through interactions with mechanistic target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/AKT (protein kinase B, PKB) and other molecules, including R-spondin 2 (Rspo2) and SRY-box 9 (Sox9). NF-κB expression can modulate osteoblast differentiation by upregulating secreted protein acidic and rich in cysteine (SPARC) and interacting with mTOR signalling, bone morphogenetic protein (BMP) signalling or integrin-mediated signalling under stretch stimulation in the final osteogenic stage. In FOP, mutated ACVR1-induced NF-κB signalling exacerbates inflammation in macrophages and can promote chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs) through interactions with smad signalling and mTOR signalling. This review summarizes the molecular mechanism of NF-κB signalling during HO and highlights potential therapeutics for treating HO.


Asunto(s)
FN-kappa B , Osificación Heterotópica , Humanos , Osteonectina , Serina-Treonina Quinasas TOR , Inflamación
5.
BMC Gastroenterol ; 24(1): 91, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429655

RESUMEN

BACKGROUND: Aberrant DNA methylation is prevalent in colorectal serrated lesions. We previously reported that the CpG island of SMOC1 is frequently methylated in traditional serrated adenomas (TSAs) and colorectal cancers (CRCs) but is rarely methylated in sessile serrated lesions (SSLs). In the present study, we aimed to further characterize the expression of SMOC1 in early colorectal lesions. METHODS: SMOC1 expression was analyzed immunohistochemically in a series of colorectal tumors (n = 199) and adjacent normal colonic tissues (n = 112). RESULTS: SMOC1 was abundantly expressed in normal colon and SSLs while it was significantly downregulated in TSAs, advanced adenomas and cancers. Mean immunohistochemistry scores were as follows: normal colon, 24.2; hyperplastic polyp (HP), 18.9; SSL, 23.8; SSL with dysplasia (SSLD)/SSL with early invasive cancer (EIC), 15.8; TSA, 5.4; TSA with high grade dysplasia (HGD)/EIC, 4.7; non-advanced adenoma, 21.4; advanced adenoma, 11.9; EIC, 10.9. Higher levels SMOC1 expression correlated positively with proximal colon locations and flat tumoral morphology, reflecting its abundant expression in SSLs. Among TSAs that contained both flat and protruding components, levels of SMOC1 expression were significantly lower in the protruding components. CONCLUSION: Our results suggest that reduced expression of SMOC1 is associated with progression of TSAs and conventional adenomas and that SMOC1 expression may be a biomarker for diagnosis of serrated lesions and risk prediction in colorectal tumors.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Humanos , Adenoma/genética , Adenoma/patología , Pólipos del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Hiperplasia , Osteonectina , Proteínas Proto-Oncogénicas B-raf/genética
6.
Ecotoxicol Environ Saf ; 274: 116217, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489904

RESUMEN

The aim of this study is to conduct a thorough evaluation of the association between Benzophenone-3 (BP-3) exposure and OA, offering critical insights into the underlying mechanisms involved. The National Health and Nutrition Examination Survey (NHANES) database was utilized to investigate the correlation between BP-3 and osteoarthritis. Proteomic sequencing from clinical sample and the PharmMapper online tool were employed to predict the biological target of BP-3. Cellular molecular assays and transfection studies were performed to verify the prediction from bioinformatics analyses. Through cross-sectional analysis of the NHANES database, we identified BP-3 as a risk factor for OA development. The results of proteomic sequencing showed that Secreted Protein Acidic and Rich in Cysteine (SPARC) was significantly elevated in the area of damage compared to the undamaged area. SPARC was also among the potential biological targets of BP-3 predicted by the online program. Through in vitro cell experiments, we further determined that the toxicological effects of BP-3 may be due to SPARC, which elevates intracellular GPX4 levels, activates the glutathione system, and promotes lipid peroxidation to mitigate ferroptosis. Inhibiting SPARC expression has been shown to reduce inflammation and ferroptosis in OA contexts. This research provides an expansive understanding of BP-3's influence on osteoarthritis development. We have identified SPARC as a potent target for combating chondrocyte ferroptosis in BP-3-associated osteoarthritis.


Asunto(s)
Benzofenonas , Ferroptosis , Osteoartritis , Osteonectina , Humanos , Benzofenonas/metabolismo , Benzofenonas/toxicidad , Biología Computacional , Estudios Transversales , Ferroptosis/efectos de los fármacos , Encuestas Nutricionales , Osteoartritis/inducido químicamente , Osteonectina/antagonistas & inhibidores , Osteonectina/genética , Osteonectina/metabolismo , Proteómica
7.
Int Immunopharmacol ; 132: 111856, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537537

RESUMEN

BACKGROUND AND AIMS: Inflammation and atherosclerosis (AS) are closely associated to Secreted Protein Acidic and Rich in Cysteine (SPARC) and its related factors. This study attempted to define the role and the potential mechanism of SPARC and its related factors in ameliorating hyperlipidemia and AS by aerobic exercise intervention. METHODS: The AS rat model was established with a high-fat diet plus vitamin D3 intraperitoneal injection. Treadmill exercises training (5 days/week at 14 m/min for 60 min/day) for 6 weeks was carried out for AS rat intervention method. Western blotting and qRT-PCR were used to analyze the mRNA and protein expression of SPARC and its related factors, respectively. H&E staining was applied to evaluate the morphological changes and inflammation damage. Von Kossa staining was used to measure the degree of vascular calcification. Fluorescence immunohistochemistry staining was used to detect the expression and distribution of SPARC signal molecules. RESULTS: SPARC was highly expressed and co-localization with the smooth muscle marker α-SMC in the AS rat. And its downstream factors, NF-κB, Caspase-1, IL-1ß and IL-18 were upregulated (P < 0.05 or P < 0.01), FNDC5 expression was downregulated in AS rat model. However, slight declined body weight, delayed AS progression, decreased hyperlipidemia and favorable morphology of skeletal muscle and blood vessels have been detected in AS rat with aerobic exercise intervention. Moreover, the expression of SPARC and its downstream factors were decreased (P < 0.05 or P < 0.01), while elevated the expression of FNDC5 (P < 0.01) was observed after aerobic exercise intervention. CONCLUSIONS: This study suggested that aerobic exercise ameliorated hyperlipidemia and AS by effectively inhibiting SPARC signal, and vascular smooth muscle cells may contribute greatly to the protection of AS.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Osteonectina , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Animales , Osteonectina/metabolismo , Osteonectina/genética , Aterosclerosis/terapia , Aterosclerosis/metabolismo , Masculino , Ratas , Transducción de Señal , Modelos Animales de Enfermedad , Hiperlipidemias/terapia , Hiperlipidemias/metabolismo , Colecalciferol/metabolismo
9.
Toxicology ; 504: 153762, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403151

RESUMEN

Recent research has hinted at a potential connection between silicosis, a fibrotic lung disease caused by exposure to crystalline silica particles, and cuproptosis. The aim of the study was to explore how cuproptosis-related genes (CRGs) may influence the development of silicosis and elucidate the underlying mechanisms. An analysis of genes associated with both silicosis and cuproptosis was conducted. Key gene identification was achieved through the application of two machine learning techniques. Additionally, the correlation between these key genes and immune cell populations was explored and the critical pathways were discerned. To corroborate our findings, the expression of key genes was verified in both a publicly available silica-induced mouse model and our own silicosis mouse model. A total of 12 differentially expressed CRGs associated with silicosis were identified. Further analysis resulted in the identification of 6 CRGs, namely LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2. Elevated immune cell infiltration of CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils in silicosis patients compared to healthy controls was indicated. Validation in a silica-induced pulmonary fibrosis mouse model supported SPARC and MT-CO2 as potential signature genes for the prediction of silicosis. These findings highlight a strong association between silicosis and cuproptosis. Among CRGs, LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2 emerged as pivotal players in the context of silicosis by modulating CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils.


Asunto(s)
Dióxido de Silicio , Silicosis , Silicosis/genética , Silicosis/inmunología , Silicosis/patología , Animales , Dióxido de Silicio/toxicidad , Ratones , Masculino , Ratones Endogámicos C57BL , Humanos , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/inmunología , Pulmón/efectos de los fármacos , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Aprendizaje Automático , Osteonectina/genética
10.
BMC Oral Health ; 24(1): 223, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347494

RESUMEN

BACKGROUND: Secreted protein acidic and rich in cysteine (SPARC) has been shown to modulate aggressive behavior in several benign and malignant tumors. Little is known about SPARC expression in odontogenic keratocyst (OKC), an odontogenic cyst with an aggressive nature. To the best of our knowledge, only one study has been investigated the expression of this protein in OKCs. This study aimed to characterize SPARC expression in OKCs. Additionally, to determine whether SPARC is associated with aggressive behavior in OKCs, SPARC expression in OKCs was compared with radicular cysts (RCs), dentigerous cysts (DCs) and calcifying odontogenic cysts (COCs). These odontogenic cysts showed no or less aggressive behavior. METHODS: SPARC expression was evaluated in 38 OKCs, 39 RCs, 35 DCs and 14 COCs using immunohistochemistry. The percentages of positive cells and the intensities of immunostaining in the epithelial lining and the cystic wall were evaluated and scored. RESULTS: Generally, OKCs showed similar staining patterns to RCs, DCs and COCs. In the epithelial lining, SPARC was not detected, except for ghost cells in all COCs. In the cystic wall, the majority of positive cells were fibroblasts. Compared between 4 groups of odontogenic cysts, SPARC expression in OKCs was significantly higher than those of RCs (P < 0.001), DCs (P < 0.001) and COCs (P = 0.001). CONCLUSIONS: A significant increase of SPARC expression in OKCs compared with RCs, DCs and COCs suggests that SPARC may play a role in the aggressive behavior of OKCs.


Asunto(s)
Quiste Dentígero , Quistes Odontogénicos , Tumores Odontogénicos , Quiste Radicular , Humanos , Quistes Odontogénicos/metabolismo , Quistes Odontogénicos/patología , Osteonectina , Quiste Radicular/metabolismo
12.
FEBS J ; 291(8): 1699-1718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38245817

RESUMEN

Over the years, pancreatic cancer has experienced a global surge in incidence and mortality rates, largely attributed to the influence of obesity and diabetes mellitus on disease initiation and progression. In this study, we investigated the pathogenesis of pancreatic cancer in mice subjected to a high-fat diet (HFD) and observed an increase in citric acid expenditure. Notably, citrate treatment demonstrates significant efficacy in promoting tumor cell apoptosis, suppressing cell proliferation, and inhibiting tumor growth in vivo. Our investigations revealed that citrate achieved these effects by releasing secreted protein acidic and rich in cysteine (SPARC) proteins, repolarizing M2 macrophages into M1 macrophages, and facilitating tumor cell apoptosis. Overall, our research highlights the critical role of citric acid as a pivotal metabolite in the intricate relationship between obesity and pancreatic cancer. Furthermore, we uncovered the significant metabolic and immune checkpoint function of SPARC in pancreatic cancer, suggesting its potential as both a biomarker and therapeutic target in treating this patient population.


Asunto(s)
Osteonectina , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Ácido Cítrico , Dieta Alta en Grasa/efectos adversos , Obesidad , Osteonectina/genética , Osteonectina/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
13.
Pathol Res Pract ; 254: 155053, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199134

RESUMEN

BACKGROUND: Prostate cancer (PCa) is common malignancy among men worldwide. To date only few molecular markers are available to predict its course and outcome. SPARC is considered to be promising prognostic marker of PCa due to its involvement in various cancer processes. MATERIALS AND METHODS: study was conducted on PCa surgical primary tumor samples, obtained from 84 patients. Level of SPARC mRNA expression was estimated using RT-qPCR. To identify SPARC protein (osteonectin) in prostate tissue, immunohistochemical analysis was conducted. Bioinformatical analysis was performed on UALCAN and TNMplot resources. RESULTS: bioinformatical analysis demonstrated that SPARC mRNA levels are decreased in PCa samples, in comparison to normal tissue. In patients with lymph node metastases its levels are 1.26 times higher; p = 4.66E-02, than in N0 category. Ex vivo study demonstrated that SPARC expression was elevated on both mRNA and protein levels in PCa patients with lymph node metastases (by 2.34 and 1.91, respectively, p < 0.05). We established higher levels of SPARC mRNA and protein in PCa patients with T3 tumors, as well as high Gleason score. Estimation of survival rates demonstrated that PCa patients with a high level of SPARC mRNA and protein have decreased overall 2-year survival. CONCLUSIONS: SPARC protein was overexpressed on mRNA and protein levels in patients with presence of lymph node metastases and higher Gleason score of tumors. Also, both mRNA and protein upregulation were associated with worse survival rates. The current study has therefore provided further evidence that SPARC is indeed linked to the prognosis and aggressiveness of human PCa.


Asunto(s)
Osteonectina , Neoplasias de la Próstata , Masculino , Humanos , Pronóstico , Osteonectina/genética , Osteonectina/metabolismo , Metástasis Linfática , Neoplasias de la Próstata/patología , ARN Mensajero/genética
14.
J Control Release ; 366: 596-610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184232

RESUMEN

Insufficient delivery of therapeutic agents into solid tumors by systemic administration remains a major challenge in cancer treatment. Secreted protein acidic and rich in cysteine (SPARC) has high binding affinity to albumin and has been shown to enhance the penetration and uptake of albumin-based drug carriers in tumors. Here, we developed a strategy to alter the tumor microenvironment (TME) by upregulating SPARC to enhance the delivery efficiency of albumin-based drug carriers into tumors. We prepared albumin nanoparticles encapsulating an NF-κB controllable CRISPR activation system (SP-NPs). SP-NPs achieved tumor-selective SPARC upregulation by responding to the highly activated NF-κB in tumor cells. Whereas a single dose of SP-NPs only modestly upregulated SPARC expression, serial administration of SP-NPs created a positive feedback loop that induced progressive increases in SPARC expression as well as tumor cell uptake and tumor penetration of the nanoparticles in vitro, in organoids, and in subcutaneous tumors in vivo. Additionally, pre-treatment with SP-NPs significantly enhanced the anti-tumor efficacy of Abraxane, a commercialized albumin-bound paclitaxel nanoformulation. Our data provide evidence that modulating SPARC in the TME can enhance the efficiency of albumin-based drug delivery to solid tumors, which may result in new strategies to increase the efficacy of nanoparticle-based cancer drugs.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , Osteonectina , Albúminas , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Portadores de Fármacos , Paclitaxel Unido a Albúmina , Microambiente Tumoral
15.
Biomolecules ; 14(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38254665

RESUMEN

Mammalian cells have evolved to function under Earth's gravity, but how they respond to microgravity remains largely unknown. Neural stem cells (NSCs) are essential for the maintenance of central nervous system (CNS) functions during development and the regeneration of all CNS cell populations. Here, we examined the behavior of space (SPC)-flown NSCs as they readapted to Earth's gravity. We found that most of these cells survived the space flight and self-renewed. Yet, some showed enhanced stress responses as well as autophagy-like behavior. To ascertain if the secretome from SPC-flown NSCs contained molecules inducing these responses, we incubated naïve, non-starved NSCs in a medium containing SPC-NSC secretome. We found a four-fold increase in stress responses. Proteomic analysis of the secretome revealed that the protein of the highest content produced by SPC-NSCs was secreted protein acidic and rich in cysteine (SPARC), which induces endoplasmic reticulum (ER) stress, resulting in the cell's demise. These results offer novel knowledge on the response of neural cells, particularly NSCs, subjected to space microgravity. Moreover, some secreted proteins have been identified as microgravity sensing, paving a new venue for future research aiming at targeting the SPARC metabolism. Although we did not establish a direct relationship between microgravity-induced stress and SPARC as a potential marker, these results represent the first step in the identification of gravity sensing molecules as targets to be modulated and to design effective countermeasures to mitigate intracranial hypertension in astronauts using structure-based protein design.


Asunto(s)
Células-Madre Neurales , Vuelo Espacial , Animales , Humanos , Osteonectina , Proteómica , Neuronas , Mamíferos
16.
Biochem Biophys Res Commun ; 692: 149364, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070276

RESUMEN

The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.


Asunto(s)
Osteonectina , Ligamento Periodontal , Animales , Ratones , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Ratones Noqueados , Osteonectina/genética , Osteonectina/metabolismo
17.
Int J Cancer ; 154(5): 895-911, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907830

RESUMEN

Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Exosomas , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/patología , Pronóstico , Exosomas/metabolismo , Microambiente Tumoral , Osteonectina/genética , Osteonectina/metabolismo
18.
Atherosclerosis ; 388: 117390, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048752

RESUMEN

BACKGROUND AND AIMS: Secreted protein acidic and rich in cysteine (SPARC) is involved in the pathological processes of many metabolic diseases. However, studies on the relevance of SPARC to hypertension and its involvement in endothelial function are scarce. In this study, we aim to explore the relevance of SPARC to hypertension and investigate its role in endothelium-dependent relaxation (EDR). METHODS: 110 patients who met the criteria were recruited as participants. Serum SPARC concentrations were determined by Luminex assay. The correlation between SPARC levels and hypertension was analyzed. After treatment with SPARC ex vivo or in vivo, endothelial-dependent relaxation (EDR) was measured by wire myography. Western blotting was performed to detect the expression of proteins relevant to endothelial function. RESULTS: Our results showed that serum SPARC levels were significantly higher in the hypertensive group and were positively associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP). Functional results demonstrated that SPARC dramatically impaired EDR and induced the excess production of reactive oxygen species (ROS) in endothelial cells. Further experimental results confirmed that SPARC reduced angiotensin-converting enzyme 2 (ACE2) expression and ACE2 overexpression or activation completely abolished the impairing effect of SPARC on endothelial function. CONCLUSIONS: The present study reveals the correlation between elevated SPARC and hypertension and confirms its adverse effect on endothelial function, helping establish a comprehensive understanding of hypertension-related endothelial dysfunction in a new scope.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hipertensión , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Células Endoteliales/metabolismo , Osteonectina/metabolismo , Endotelio
19.
Am J Surg Pathol ; 48(2): 140-149, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899530

RESUMEN

Epithelioid mesothelioma with a solid histologic pattern (solid epithelioid mesothelioma) is difficult to distinguish from a poorly differentiated squamous cell lung carcinoma and/or solid lung adenocarcinoma. Thus, immunohistochemical markers are essential for diagnosis; however, the sensitivity and specificity of pre-existing mesothelial markers are suboptimal, particularly for differentiation from squamous cell carcinoma. Using a cancer-dependency map, we analyzed gene expression data of pleural mesothelioma and non-small cell lung cancer cell lines (squamous cell carcinoma and adenocarcinoma) and identified secreted protein acidic and cysteine-rich (SPARC) as a promising candidate for the differential diagnosis of epithelioid mesothelioma from lung squamous cell carcinoma and/or lung adenocarcinoma. SPARC expression in mesothelioma and lung cancer cell lines was validated using reverse-transcription polymerase chain reaction, western blotting, and immunohistochemistry. Immunohistochemical staining was performed using anti-SPARC antibodies against solid epithelioid mesothelioma, solid lung adenocarcinoma, and poorly differentiated lung squamous cell carcinoma. SPARC positivity was seen in 42/45 (93.3%) of solid epithelioid mesothelioma, 2/40 (5%) solid lung adenocarcinoma, and 2/45 (4.5%) of lung squamous cell carcinomas. The sensitivity, specificity, and diagnostic accuracy for differentiating solid epithelioid mesothelioma from lung cancer (solid lung adenocarcinoma and poorly differentiated lung squamous cell carcinoma) were 93.3, 95.2, and 94.6%, respectively. In conclusion, SPARC is a novel mesothelial marker that can be used to differentiate epithelioid mesothelioma from squamous cell carcinoma and lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Biomarcadores de Tumor/análisis , Mesotelioma Maligno/diagnóstico , Adenocarcinoma del Pulmón/diagnóstico , Mesotelioma/diagnóstico , Mesotelioma/patología , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Diagnóstico Diferencial , Osteonectina
20.
Front Immunol ; 14: 1259381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077346

RESUMEN

Serum C-reactive protein (CRP) has been found elevated during COVID-19 infection, and associated with systematic inflammation as well as a poor clinical outcome. However, how did CRP participated in the COVID-19 pathogenesis remains poorly understood. Here, we report that serum C-reactive protein (CRP) levels are correlated with megakaryocyte marker genes and could regulate immune response through interaction with megakaryocytes. Molecular dynamics simulation through ColabFold showed a reliable interaction between monomeric form of CRP (mCRP) and the secreted protein acidic and rich in cysteine (SPARC). The interaction does not affect the physiological activities of SPARC while would be disturbed by pentamerization of CRP. Interplay between SPARC and mCRP results in a more intense immune response which may led to poor prognosis. This study highlights the complex interplay between inflammatory markers, megakaryocytes, and immune regulation in COVID-19 and sheds light on potential therapeutic targets.


Asunto(s)
Proteína C-Reactiva , COVID-19 , Humanos , Proteína C-Reactiva/metabolismo , Células Cultivadas , Inflamación/metabolismo , Osteonectina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...